Electrical Engineering Department Faculty of Engineering at Shoubra Banha university

Subject: Electrical Circuit $1^{\text {st }}$ semester, 2015/2016 Sheet No. 1
(1) For each of the following voltage and current $v_{\mathrm{s}}=12 \sin \left(10^{3} \mathrm{t}+24^{\circ}\right) \mathrm{V}, i_{\mathrm{s}}=8 \cos \left(500 \pi \mathrm{t}-25^{\circ}\right) \mathrm{A}$, Find;
(a) The angular frequency?
(b) The frequency of the source?
(c) Express v_{s} in cosine form.
(d) Determine v_{s} and i_{s} at $\mathrm{t}=2.5 \mathrm{~ms}$
(2) For the following pairs of sinusoids, determine which one leads and by how much.
(a) $v(\mathrm{t})=10 \cos \left(4 \mathrm{t}-60^{\circ}\right), \quad i(\mathrm{t})=4 \sin \left(4 \mathrm{t}+50^{\circ}\right)$
(b) $v_{1}(\mathrm{t})=4 \cos \left(377 \mathrm{t}+10^{\circ}\right), v_{2}(\mathrm{t})=-20 \cos (377 \mathrm{t})$
(c) $\mathrm{x}(\mathrm{t})=13 \cos 2 \mathrm{t}+5 \sin 2 \mathrm{t}, \quad \mathrm{y}(\mathrm{t})=15 \cos \left(2 \mathrm{t}-11.8^{\circ}\right)$
(3) Transform the following sinusoids to phasors:
(a) $-10 \cos \left(4 t+75^{\circ}\right)$
(b) $5 \sin \left(20 t-10^{\circ}\right)$
(c) $4 \cos 2 t+3 \sin 2 t$
(4) Obtain the sinusoids corresponding to each of the following phasors:
(a) $\mathrm{V}_{1}=60\left\llcorner 15^{\circ}, \omega=1\right.$
(b) $V_{2}=6+j 8, \omega=40$
(c) $I_{1}=2.8 \mathrm{e}^{-\mathrm{j} / 3}, \omega=377$
(d) $\mathrm{I}_{2}=-0.5-\mathrm{j} 1.2, \omega=10^{3}$
(5) Determine the current that flows through an $8-\Omega$ resistor connected to a voltage source $v_{s}=110 \cos 377$ t
(6) What is the instantaneous voltage across a $2-\mu \mathrm{F}$ capacitor when the current through it is:
$i=4 \sin \left(10^{6} \mathrm{t}+25^{\circ}\right) \mathrm{A}$?
(7) The voltage across a 4-mH inductor is $v(\mathrm{t})=60 \cos \left(500 \mathrm{t}-65^{\circ}\right)$ V Find the instantaneous current through it?
(8) A current source of $i(t)=10 \sin \left(377 t+30^{\circ}\right)$ A is applied to a single element load. The resulting voltage across the element is $v(\mathrm{t})=-65 \cos \left(377 \mathrm{t}+120^{\circ}\right) \mathrm{V}$. What type of element is this? Calculate its value.
(9) What value of ω will cause the voltage v_{o} in the figure to be zero?
(10) If $v_{\mathrm{s}}=5 \cos 2 \mathrm{t} \mathrm{V}$ in the figure. Find v_{o} using voltage divider rule.

(11) Find i_{x} using current divider rule, when $i_{\mathrm{s}}=2$ $\sin 5 t \mathrm{~A}$ is supplied to the circuit shown in figure.

Sheet No. 1
(12) Find $i(\mathrm{t})$ and $v(\mathrm{t})$ in the circuit shown, if the source frequency is 60 Hz .
(13)) In the circuit shown in fig. Calculate $i_{1}(\mathrm{t})$ and $i_{2}(\mathrm{t})$ using current divider rule.
(14) Find $v(t)$ in the RLC circuit
(15) In the circuit shown in fig. Calculate $v_{0}(t)$ using voltage divider rule.
(16) Find current I_{o} in the network shown
(17) If $i_{\mathrm{s}}=5 \cos \left(10 \mathrm{t}+40^{\circ}\right) \mathrm{A}$ find i_{o}
(18) Find $v_{\mathrm{s}}(\mathrm{t})$ in the circuit shown if the current i_{x} through the $1-\Omega$ resistor is $0.5 \sin 200 \mathrm{t}$ A.
(19) If $V_{o}=8\left\llcorner 30^{\circ} V\right.$ find I_{s}.

