Electrical Engineering Department Faculty of Engineering at Shoubra Banha university

Subject: Electrical Circuit 1st semester, 2015/2016 Sheet No. 1

- (1) For each of the following voltage and current $v_s = 12 \sin(10^3 \text{t} + 24^\circ) \text{ V}$, $i_s = 8 \cos(500\pi \text{ t} 25^\circ) \text{ A}$, Find;
 - (a) The angular frequency?
 - (b) The frequency of the source?
 - (c) Express v_s in cosine form.
 - (d) Determine v_s and i_s at t = 2.5 ms
- (2) For the following pairs of sinusoids, determine which one leads and by how much.
 - (a) $v(t) = 10 \cos(4t-60^{\circ})$,

$$i(t) = 4\sin(4t + 50^{\circ})$$

(b)
$$v_1(t) = 4\cos(377t+10^\circ)$$
, $v_2(t) = -20\cos(377t)$

$$v_2(t) = -20\cos(377t)$$

(c)
$$x(t) = 13 \cos 2t + 5 \sin 2t$$
, $y(t) = 15 \cos(2t-11.8^{\circ})$

(3) Transform the following sinusoids to phasors:

(a)
$$-10\cos(4t+75^{\circ})$$

(b)
$$5 \sin(20t-10^{\circ})$$

(c)
$$4 \cos 2t + 3 \sin 2t$$

(4) Obtain the sinusoids corresponding to each of the following phasors:

(a)
$$V_1 = 60 \perp 15^{\circ}$$
, $\omega = 1$

(b)
$$V_2 = 6 + i8$$
, $\omega = 40$

(a)
$$V_1 = 60 \perp 15^\circ$$
, $\omega = 1$ (b) $V_2 = 6 + j8$, $\omega = 40$ (c) $I_1 = 2.8e^{-j/3}$, $\omega = 377$ (d) $I_2 = -0.5 - j1.2$, $\omega = 10^3$

(d)
$$I_2 = -0.5 - i1.2$$
, $\omega = 10^3$

- (5) Determine the current that flows through an 8- Ω resistor connected to a voltage source $v_s = 110 \cos 377t$
- (6) What is the instantaneous voltage across a 2-μF capacitor when the current through it is: $i = 4 \sin(10^6 t + 25^\circ) A$?
- (7) The voltage across a 4-mH inductor is $v(t) = 60 \cos(500t-65^{\circ})$ V Find the instantaneous current through it?
- (8) A current source of $i(t) = 10 \sin(377t + 30^{\circ})$ A is applied to a single element load. The resulting voltage across the element is $v(t) = -65 \cos(377t + 120^{\circ})$ V. What type of element is this? Calculate its value.
- (9) What value of ω will cause the voltage v_0 in the figure to be zero?
- (10) If $v_s = 5 \cos 2t \text{ V}$ in the figure. Find v_o using voltage divider rule.
- (11) Find i_x using current divider rule, when $i_s = 2$ sin5t A is supplied to the circuit shown in figure.

Sheet No. 1

- (12) Find i(t) and v(t) in the circuit shown, if the source frequency is 60 Hz.
- (13)) In the circuit shown in fig. Calculate $i_1(t)$ and $i_2(t)$ using current divider rule.

- (16) Find current I_o in the network shown
- (17) If $i_s = 5 \cos(10t + 40^\circ)$ A find i_o
- (18) Find $v_s(t)$ in the circuit shown if the current i_x through the 1- Ω resistor is 0.5 sin200t A.
- (19) If $V_o=8 \perp 30^o \text{ V find } I_s$.

